

Vaunix Technology Corporation

Lab Brick® Family of Phase Shifters

API User

Manual

Vaunix Technology Corporation Lab Brick Digital Attenuator

2

Revision A

NOTICE

Vaunix has prepared this manual for use by Vaunix Company personnel and

customers as a guide for the customized programming of Lab Brick products.

The drawings, specifications, and information contained herein are the property

of Vaunix Technology Corporation, and any unauthorized use or disclosure of

these drawings, specifications, and information is prohibited; they shall not be

reproduced, copied, or used in whole or in part as the basis for manufacture or

sale of the equipment or software programs without the prior written consent of

Vaunix Technology Corporation.

Vaunix Technology Corporation Lab Brick Digital Attenuator

3

Table of Contents

1.0 OVERVIEW .. 4

2.0 USING THE SDK .. 5

3.0 PROGRAMMING ... 6

3.1 Overall Strategy and API Achitecture ...6

3.2 Status Codes ...7

3.3 Functions – Selecting the Device ...8

3.4 Functions – Setting parameters on the Phase Shifter ...9

3.5 Functions – Reading parameters from the Phase Shifter12

4.0 PROGRAMMING SUPPORT .. 14

Vaunix Technology Corporation Lab Brick Digital Attenuator

4

1.0 OVERVIEW

The Lab Brick Programmable Phase Shifter Win32 SDK supports developers who want to control

Lab

Brick LPS series devices from Windows programs, or who want to control the phase shifters from

LabVIEW1 or other National Instruments programming environments. The SDK includes a dll which

provides a Win32 API to find, initialize, and control the LPS phase shifters, along with header files

and an example Win32 C program which demonstrates the use of the API. The standard version of

the dll uses Microsoft’s stdcall calling convention and dll linkage, so that the Lab Brick dll can be

called by any software which can call a Windows Win32 API function. Other versions are available,

including C style calling conventions. If you need a dll with one of the other Microsoft supported

naming conventions, or a similar library for use with the Linux family of operating systems please

contact Vaunix technical support.

1 LabView is a trademark of National Instruments

Vaunix Technology Corporation Lab Brick Digital Attenuator

5

2.0 USING THE SDK

The SDK consists of a dll, named VNX_dps.dll, along with this documentation, a C style header file,

a library file for linking to the dll, and an example program written in C using Visual Studio 2008.

Unzip the SDK into a convenient place on your hard disk, and then copy the dll and library file into

the directory of the executable program you are creating. Add the header file (vnx_lps_api.h) to your

project, being sure to retain the surrounding extern C declaration in the .h file, and include it with the

other header files in your program. Make sure that the linker directives include the path of the library

file.

Vaunix Technology Corporation Lab Brick Digital Attenuator

6

3.0 PROGRAMMING

3.1 Overall Strategy and API Achitecture

The API provides functions for identifying how many and what type of Lab Brick programmable

phase shifters connected to the system, initializing the phase shifters so that you can send them

commands and read their state, functions to control the operation of the phase shifters, and finally a

function to close the software connection to each Lab Brick when you no longer need to

communicate with it.

The API can be operated in a test mode, where the functions will simulate many aspects of normal

operation but will not actually communicate with the hardware devices. This feature is provided as a

convenience to software developers who may not have a Lab Brick programmable phase shifter with

them, but still want to be able to work on an applications program that uses the Lab Brick. Of course

it is important to make sure that the API is in its normal mode in order to access the actual hardware!

Be sure to call fnLPS_SetTestMode(FALSE), unless of course you want the API to operate in its test

mode. In test mode there will be one LPS-802 device.

The first step is to identify the phase shifters connected to the system. Call the function

fnLPS_GetNumDevices() to get the number of LPS phase shifters attached to the system. Note that

USB devices can be attached and detached by users at any time. If you are writing a program which

needs to handle the situation where devices are attached or detached while the program is operating,

you should periodically call fnLPS_GetNumDevices() to see if any new devices have been attached.1

Allocate an array big enough to hold the device ids for the number of devices present. While you

should use the DEVID type declared in vnx_lps_api.h it’s just an array of units at this point. You

may want to just allocate an array large enough to hold MAXDEVICES device ids, so that you do

not have to handle the case where the number of attached devices increases.

Call fnLPS_GetDevInfo(DEVID *ActiveDevices), which will fill in the array with the device ids for

each connected phase shifter. The function returns an integer, which is the number of devices present

on the machine.

2 Usually it is a good idea to call fnLPS_GetNumDevices() at 1to 5 second intervals. While a short

interval reduces the chances, it is still possible that the user will remove one device and replace it

with another however, so to completely handle all the cases which can result from users hot plugging

devices your application needs to check to see not only if the number of devices is different, but if

the same number of devices are present, but they are different devices.

Vaunix Technology Corporation Lab Brick Digital Attenuator

7

The next step is to call fnLPS_GetModelName(DEVID deviceID, char *ModelName) with a null

ModelName pointer to get the length of the model name, or just use a buffer that can hold

MAX_MODELNAME chars. You can use the model name to identify the type of phase shifter in

the event that other models of the LPS phase shifters are offered in the future. Call

fnLPS_GetSerialNumber(DEVID deviceID) to get the serial number of the phase shifter. Based on

that information, your program can determine which device to open.

Once you have identified the phase shifter you want to send commands to, call

fnLPS_InitDevice(DEVID deviceID) to actually open the device and get its various parameters like

phase angle setting, ramp parameters, etc. After the fnLPS_InitDevice function has completed you

can use any of the get functions to read the settings of the phase shifter. It is best to use the

InitDevice function once, at the beginning of operation, and then close the device when your

program has completed its operations with the Lab Brick device.

To change one of the settings of the phase shifter, use the corresponding set function. Before selecting

a phase shift, or starting a ramp or profile, set the operating frequency of the phase shifter based on

the center frequency of the signal you want to phase shift.

For example, to set a 30 degree phase shift for a 5.6 GHz signal, first call

fnLPS_SetWorkingFrequency(DEVID deviceID, int frequency) with the frequency in 100KHz units

(56000 in this example). Then call fnLPS_SetPhaseAngle(DEVID deviceID, int phase) with the

desired phase shift (30 in this example).

When you are done with the device, call fnLPS_CloseDevice(DEVID deviceID).

3.2 Status Codes

All of the set functions return a status code indicating whether an error occurred. The get functions

normally return an integer value, but in the event of an error they will return an error code. The error

codes can be distinguished from normal data by their numeric value, since all error codes have their

high bit set, and they are outside of the range of normal data.

A separate function, fnLPS_GetDeviceStatus(DEVID deviceID) provides access to a set of status bits

describing the operating state of the phase shifter. This function can be used to check if a device is

currently connected or open.

The values of the status codes are defined in the vnx_lps_api.h header file.

Vaunix Technology Corporation Lab Brick Digital Attenuator

8

3.3 Functions – Selecting the Device

VNX_LPS_API void fnLPS_SetTestMode(bool testmode)

Set testmode to FALSE for normal operation. If testmode is TRUE the dll does not communicate

with the actual hardware, but simulates the basic operation of the dll functions. It does not

simulate the operation of ramps or profile operations generated by the actual hardware, but it does

simulate the behavior of the functions used to get and set the parameters for the ramps and profile

operations.

VNX_LPS_API int fnLPS_GetNumDevices()

This function returns a count of the number of connected LPS phase shifters.

VNX_LPS_API int fnLPS_GetDevInfo(DEVID *ActiveDevices)

This function fills in the ActiveDevices array with the device ids for the connected phase shifters.

Note that the array must be large enough to hold a device id for the number of devices returned

by fnLPS_GetNumDevices. The function also returns the number of active devices, which can,

under some circumstances, be less than the number of devices returned in the previous call to

fnLPS_GetNumDevices.

The device ids are used to identify each device, and are used in the rest of the functions to select

the device. Note that while the device ids may be small integers, and may, in some circumstances

appear to be numerically related to the devices present, they should only be used as opaque

handles.

VNX_LPS_API int fnLPS_GetModelName(DEVID deviceID, char *ModelName)

This function is used to get the model name of the phase shifter. If the function is called with a

null pointer, it returns just the length of the model name string. If the function is called with a

non-null string pointer it copies the model name into the string and returns the length of the

string. The string length will never be greater than the constant MAX_MODELNAME which is

defined in vnx_lps_api.h This function can be used regardless of whether or not the phase shifter

has been initialized with the fnLPS_InitDevice function.

VNX_LPS_API int fnLPS_GetSerialNumber(DEVID deviceID)

This function is used to get the serial number of the phase shifter. It can be called regardless of

whether or not the phase shifter has been initialized with the fnLPS_InitDevice function. If your

system has multiple Lab Brick LPS phase shifters, your software should use each device’s serial

number to keep track of each specific device. Do not rely upon the order in which the devices

appear in the table of active devices. On a typical system the individual phase shifters will

typically be found in the same order, but there is no guarantee that this will occur.

Vaunix Technology Corporation Lab Brick Digital Attenuator

9

VNX_LPS_API int fnLPS_GetDeviceStatus(DEVID deviceID)

This function can be used to obtain information about the status of a device, even before the device

is initialized. (Note that information on the dynamic activity of the device, such as whether a ramp

or profile is active is not guaranteed to be available before the device is initialized.)

VNX_LPS_API int fnLPS_InitDevice(DEVID deviceID)

This function is used to open the device interface to the phase shifter and initialize the dll’s copy

of the device’s settings. If the fnLPS_InitDevice function succeeds, then you can use the various

fnLPS_Get* functions to read the phase shifter’s settings. This function will fail, and return an

error code if the phase shifter has already been opened by another program.

VNX_LPS_API int fnLPS_CloseDevice(DEVID deviceID)

This function closes the device interface to the phase shifter. It should be called when your

program is done using the Lab Brick.

3.4 Functions – Setting parameters on the Phase Shifter

VNX_LPS_API LPSTATUS fnLPS_SetPhaseAngle(DEVID deviceID, int phase)

This function is used to set the desired phase shift at the currently selected working frequency.

The first argument is the device id of the phase shifter, the second is the desired phase angle in

degrees.

VNX_LPS_API LPSTATUS fnLPS_SetWorkingFrequency(DEVID deviceID, int frequency)

This function is used to select the working frequency for the phase shifter. The frequency is

specified as an integer in 100 KHz units. A working frequency of 1 GHz, for example, would be

represented as 10,000. The working frequency range of an LPS phase shifter can be determined

by using the fnLPS_GetMaxWorkingFrequency and fnLPS_GetMinWorkingFrequency functions.

NOTE: The LabView VI does the above conversion internally therefore the units are in Hz.

VNX_LPS_API LPSTATUS fnLPS_SetRampStart(DEVID deviceID, int rampstart)

This function sets the starting phase angle for a ramp, rampstart is in degrees. The ramp can be

unidirectional, like a sawtooth, or bi-directional. A bi-directional ramp returns to the starting

value at its conclusion. A uni-directional ramp has one section, a bi-directional ramp has two

sections.

Vaunix Technology Corporation Lab Brick Digital Attenuator

10

VNX_LPS_API LPSTATUS fnLPS_SetRampEnd(DEVID deviceID, int rampstop)

This function sets the ending phase angle for a ramp, rampstop is in degrees. For a uni-directional

ramp, the rampstop angle is the phase angle at the end of the ramp. For a bi-directional ramp, the

rampstop angle is the phase angle at the end of the first section of the ramp, and becomes the

starting angle for the second section of the ramp after the hold time between the first and second

sections.

VNX_LPS_API LPSTATUS fnLPS_SetPhaseAngleStep(DEVID deviceID, int phasestep)

This function sets the magnitude of the step in phase angle which occurs during the first section of

the ramp. The phase step is always a positive value, ranging from 1 to the maximum phase shift

possible for the device, even when the direction of a ramp section causes the slope of the ramp to

be negative.

VNX_LPS_API LPSTATUS fnLPS_SetPhaseAngleStepTwo(DEVID deviceID, int phasestep2)

This function sets the magnitude of the step in phase angle which occurs during the second section

of the ramp. The phase step is always a positive value, ranging from 1 to the maximum phase shift

possible for the device, even when the direction of a ramp section causes the slope of the ramp to

be negative.

VNX_LPS_API LPSTATUS fnLPS_SetDwellTime(DEVID deviceID, int dwelltime)

This function sets the length of time that the phase shifter will dwell on each phase angle step

while it is generating the first section of the ramp. The dwelltime variable is encoded as the

number of milliseconds to dwell at each phase angle. The minimum dwell time is 1 millisecond.

VNX_LPS_API LPSTATUS fnLPS_SetDwellTimeTwo(DEVID deviceID, int dwelltime2)

This function sets the length of time that the phase shifter will dwell on each phase angle step

while it is generating the second section of the ramp. The dwelltime variable is encoded as the

number of milliseconds to dwell at each phase angle. The minimum dwell time is 1 millisecond.

VNX_LPS_API LPSTATUS fnLPS_SetIdleTime(DEVID deviceID, int idletime))

This function sets the length of time that the phase shifter will wait after completing a ramp

before beginning another ramp when the ramp mode is set to continuous operation. The idletime

variable is encoded as the number of milliseconds to wait. The minimum idle time is 0

milliseconds.

VNX_LPS_API LPSTATUS fnLPS_SetHoldTime(DEVID deviceID, int holdtime))

This function sets the length of time that the phase shifter will wait after completing the first

section of a ramp before beginning the second section of the ramp in a bi-directional ramp. The

holdtime variable is encoded as the number of milliseconds to wait. The minimum hold time is 0

milliseconds.

Vaunix Technology Corporation Lab Brick Digital Attenuator

11

VNX_LPS_API LPSTATUS fnLPS_SetRampDirection(DEVID deviceID, bool up)

This function is used to set the direction of the first section of the ramp, with up TRUE for an

increasing slope. The direction is automatically reversed in the second section for a bi-directional

ramp.

VNX_LPS_API LPSTATUS fnLPS_SetRampMode(DEVID deviceID, bool mode)

This function is used to select whether the device produces a single ramp, or a repeating series of

ramps.

For a single ramp, set mode to FALSE. This setting should be modified before starting a ramp.

VNX_LPS_API LPSTATUS fnLPS_SetRampBidirectional(DEVID deviceID, bool bidir_enable)

This function is used to select bi-directional ramps, when bidir_enable is TRUE, or unidirectional

ramps, when bidir_enable is FALSE. This setting should be modified before starting a ramp.

VNX_LPS_API LPSTATUS fnLPS_StartRamp(DEVID deviceID, bool go)

This function is used to start a ramp, or stop a ramp which is in operation. Calling the function

with go TRUE will start a ramp, calling the function with go FALSE will stop a ramp.

VNX_LPS_API LPSTATUS fnLPS_SetProfileElement(DEVID deviceID, int index, int phaseangle)

The Lab Brick phase shifter can generate a phase shift profile of up to 50 phase angle values. This

function is used to load the profile elements into the Lab Brick. The index variable specifies the

location in the profile array, and ranges from 0, the start of the profile, to 49, the end of the largest

possible profile. The phaseangle variable specifies the phase angle in degrees for the selected

element in the profile.

VNX_LPS_API LPSTATUS fnLPS_SetProfileCount(DEVID deviceID, int profilecount)

This function is used to set the length of the profile, ranging from 1 to 50.

VNX_LPS_API LPSTATUS fnLPS_SetProfileDwellTime(DEVID deviceID, int dwelltime)

This function sets the length of time that the phase shifter will dwell on each element in the

profile. The dwelltime variable is encoded as the number of milliseconds to dwell at each

element. The minimum dwell time is 1 millisecond.

VNX_LPS_API LPSTATUS fnLPS_SetProfileIdleTime(DEVID deviceID, int idletime)

This function sets the length of time that the phase shifter will wait after completing a profile

before beginning another profile when the profile is set to repeating operation. The idletime

variable is encoded as the number of milliseconds to wait. The minimum idle time is 0

milliseconds.

Vaunix Technology Corporation Lab Brick Digital Attenuator

12

VNX_LPS_API LPSTATUS fnLPS_StartProfile(DEVID deviceID, int mode)

This function is used to start or stop a profile. If mode is 0, the profile will be stopped. If mode is

1 the profile will be generated once. If mode is 2, the profile will repeat.

VNX_LPS_API LVSTATUS fnLPS_SaveSettings(DEVID deviceID)

The Lab Brick phase shifters can save their settings, and then resume operating with the saved

settings when they are powered up. Set the desired parameters, then use this function to save the

settings.

3.5 Functions – Reading parameters from the Phase Shifter

VNX_LPS_API int fnLPS_GetPhaseAngle(DEVID deviceID))

This function returns the last reported phase angle of the phase shifter. In general, the phase

shifter reports its phase angle when a new phase angle is generated in a ramp or profile, as long as

the dwell time is longer than approximately 50 milliseconds. Phase angle is reported in degrees.

Note that the updating of the phase angle variable is asynchronous with respect to calls to this

function.

VNX_LPS_API int fnLPS_GetWorkingFrequency(DEVID deviceID))

This function returns the current working frequency in 100KHz units.

NOTE: The LabView VI does the above conversion internally therefore the units are in Hz.

VNX_LPS_API int fnLPS_GetRampStart(DEVID deviceID)

This function returns the ramp starting phase angle in degrees.

VNX_LPS_API int fnLPS_GetRampEnd(DEVID deviceID)

This function returns the ramp ending phase angle in degrees.

VNX_LPS_API int fnLPS_GetDwellTime(DEVID deviceID)

This function returns the dwell time for the first section of a ramp in milliseconds.

VNX_LPS_API int fnLPS_GetDwellTimeTwo(DEVID deviceID)

This function returns the dwell time for the second section of a ramp in milliseconds.

VNX_LPS_API int fnLPS_GetIdleTime(DEVID deviceID)

This function returns the idle time between repetitions of a ramp in milliseconds.

Vaunix Technology Corporation Lab Brick Digital Attenuator

13

VNX_LPS_API int fnLPS_GetHoldTime(DEVID deviceID)

This function returns the hold time between the first and second sections of a ramp in

milliseconds.

VNX_LPS_API int fnLPS_GetPhaseAngleStep(DEVID deviceID)

This function returns the magnitude of each step in the first section of the ramp.

VNX_LPS_API int fnLPS_GetPhaseAngleStepTwo(DEVID deviceID)

This function returns the magnitude of each step in the second section of the ramp.

VNX_LPS_API int fnLPS_GetProfileElement(DEVID deviceID, int index)

This function returns the profile array element selected by the index variable. The index ranges

from 0 to 49. The returned value is in degrees.

VNX_LPS_API int fnLPS_GetProfileCount(DEVID deviceID)

This function returns the length of the profile. The returned value ranges from 1 to 50.

VNX_LPS_API int fnLPS_GetProfileDwellTime(DEVID deviceID)

This function returns the dwell time for each element of a profile in milliseconds.

VNX_LPS_API int fnLPS_GetProfileIdleTime(DEVID deviceID)

This function returns the idle time between repetitions of a profile in milliseconds.

VNX_LPS_API int fnLPS_GetProfileIndex(DEVID deviceID)

This function returns the last reported index for the active element in a profile. In general, the

phase shifter reports the index when a new element in a profile is generated, as long as the dwell

time is longer than approximately 50 milliseconds. Note that the updating of the index variable is

asynchronous with respect to calls to this function.

VNX_LPS_API int fnLPS_GetMaxPhaseShift(DEVID deviceID)

This function returns the maximum phase shift that the Lab Brick is capable of, in degrees.

VNX_LPS_API int fnLPS_GetMinPhaseShift(DEVID deviceID)

This function returns the minimum phase shift that the Lab Brick is capable of, in degrees.

VNX_LPS_API int fnLPS_GetMinPhaseStep(DEVID deviceID)

This function returns the smallest phase shift increment that the Lab Brick is capable of, in

degrees.

Vaunix Technology Corporation Lab Brick Digital Attenuator

14

VNX_LPS_API int fnLPS_GetMaxWorkingFrequency (DEVID deviceID)

This function returns the maximum working frequency for the Lab Brick phase shifter in 100KHz

units.

NOTE: The LabView VI does the above conversion internally therefore the units are in Hz.

VNX_LPS_API int fnLPS_GetMinWorkingFrequency (DEVID deviceID)

This function returns the minimum working frequency for the Lab Brick phase shifter in 100KHz

units.

NOTE: The LabView VI does the above conversion internally therefore the units are in Hz.

4.0 PROGRAMMING SUPPORT

Lab Brick programming support is available from Vaunix Technology Corporation. Please contact

our technical support group by email - LabBrickSupport@Vaunix.com.

Vaunix Technology also offers custom programming solutions. Send us your requirements to

receive a fixed rate project quotation.

Thank you for using our Lab Brick products.

